新笔趣阁 > 都市小说 > 巅峰学霸 > 第101章 疯狂的数学菜鸟(9/11)

第101章 疯狂的数学菜鸟(9/11)

上一页巅峰学霸章节列表下一页
有声小说,新笔趣阁在线收听!
何和代数工具高效估计有理点的数量,并通过现代代数几何工具理解它们的分布情况而已。

至于快速求解丢番图方程?

椭圆曲线的求解,或者模形式相关的更复杂的方程即便判定了有解,但真想解出来,老薛也只能说呵呵了。

当然这些对于乔喻这个对数学本就还没有太多敬畏之心的门外汉来说都不是问题,加上昨天他刚刚学习了彼得·舒尔茨的数学思想,一个很大胆的想法,突然就从乔喻脑子里冒了出来,且一发不可收拾。

为什么他不能尝试用彼得·舒尔茨创造的理论来解决这一类问题呢?

先不管行不行,可以尝试着把完备空间引入其中,没有合适的工具来处理类似问题,但他也可以自己来创造嘛。

虽然这是人家搭建的框架,但只要在这个框架内,符合这个框架的规则,来进行工具创造,只要能解决问题,肯定也是可行的。

那么现在摆在乔喻面前的问题就很简单了,如何把有代数曲线有理数点上界估计这个问题,引入到似完备空间理论的框架中来?

初生牛犊不怕虎的乔喻坐在桌前陷入了沉思。

一支笔也开始在稿纸上乱画起来。

好吧……

这个问题似乎不那么简单,主要是问题的转化。

想了很久,乔喻得出了一个结论,如果可以把有理数点上界估计转化为在完备几何对象上的同调和几何性质的问题,那么就可以顺理成章的使用进几何的深层工具,例如完备代数空间、模形式的几何化、以及进同调理论,来分析这些有理数点。

就是不知道这样转化的话,会不会让问题变得更加抽象和复杂了。

但不要紧,反正他就是个小卡拉米,他就是玩而已。试试又不要钱的?

于是很快乔喻就兴致勃勃的在稿纸上写下了这么一段话:

“设是一个定义在数域上的高维代数曲线,且是进完备代数空间中的闭子集。则存在一个依赖于曲线的几何性质的常数 ,使得曲线上有理点的个数满足:()≤。”

很自然的,()表示曲线上有理点的个数。

只是刚刚乔喻大脑里产生的直觉,一定会有这样一个常数。原因很复杂,这跟曲线在完备空间下的几何构型有关,需要对彼得·舒尔茨的理论有所了解,才能看懂这个命题。

现在他需要做的第一步就是先把这个命题给证明了。

因为只要证明了真有这个常数的存在,这
本章未完,请翻下一页继续阅读......... 《巅峰学霸》 最新章节第101章 疯狂的数学菜鸟,网址:https://www.bqgbi.org/344_344397/103_9.html

上一页巅峰学霸章节列表下一页