余华全神贯注聆听,关于华罗庚讲解的重点,尽数记入脑海之中,理解程度非常迅速。
“牛顿和莱布尼茨对于矩形求解存在的问题非常重视,经过这两位数学家的不懈研究,牛顿和莱布尼茨意外发现了一个关键性东西,也就是微积分最基本和最重要的核心思想,那就是微分与积分之间的互逆运算,用数学公式表达为微积分基本定理。”
华罗庚面容严肃,在黑板上写下了微积分基本定理:“而在此前,微分和积分,还是两个单独学科,微分求导数,积分求面积,互不相干,在牛顿和莱布尼茨的作用下,微积分完整体系建立。”
微分与积分之间的互逆运算。
这是微积分的核心,至此,人类文明发展史上极为重要的微积分诞生,微积分基本定理又被称为牛顿——莱布尼茨公式。
真是天才……
余华聆听了微积分诞生的历史进程,心中微微感叹,将两个单独的学科联系在一起,并且敏锐发现微分和积分之间的互逆运算,不愧是历史上两位最顶尖的大牛。
互逆运算是什么概念?
简单而言,那就是求面积的问题,可以转变为求导数,求导数的问题转变为求面积,互相变换。
如果积分之路走不通,那就从低维度研究转变为高维度研究,用微分解决问题。
如果微分之路走不通,那就从高维度研究转变为低维度研究,用积分解决问题。
此外,还可逆向积分求面积。
若你要问它的意义在哪里?
意义非常重要,在于极大程度上缩减了繁琐的计算过程,简化计算难度,极大提升数学各分支的发展效率。
微积分能求的东西实在是太多了,例如微分导数的极值。
极值非常重要,大炮发射的炮弹飞行极限距离,一船货物利润数据,从某地出发到某地之间的那条路线距离最近等等。
这是科学研究最重要的工具,亦是由人类亲自创造的数学武器。
“当然,这个时候的微积分体系还不算完美,无穷小量问题使得微积分的基础并不稳固,无穷小量的问题在于通过动态方式来定义极限,一个量在逼近0的过程中,有无数个实数,这样是行不通的,由此引发第二次数学危机,后来数学家柯西和魏尔斯特拉斯重新定义了极限,至此,微积分的基础终于稳固,后来由法国数学家勒贝格研究的勒贝格积分,为微积分收官。”
华罗庚缓缓讲述关于微积分
本章未完,请翻下一页继续阅读.........
《我的科学时代》 最新章节第九十二章 微积分的故事!,网址:https://www.bqgbi.org/215_215683/105_2.html