新笔趣阁 > 军史小说 > 我的科学时代 > 第九十二章 微积分的故事!(1/3)

第九十二章 微积分的故事!(1/3)

上一章我的科学时代章节列表下一页
有声小说,新笔趣阁在线收听!
翌日。

清晨时分,旭日东升,一抹朝阳落在清华园。

西院第28号房。

书房内。

窗户染了一层白霜,一缕缕阳光透过窗户照进无奈,屋内静谧无声,一个木制立式黑板搬进了书房。

“要学微积分,首先你要搞懂微积分是什么,不能知其然,不知其所以然。”华罗庚立于黑板旁边,写下了六个字。

微积分是什么。

“我们先从最基础的求面积讲起,在古希腊时期,阿基米德那个时代人,处于初步发展阶段的几何,数学家们遇到一个棘手且严峻的问题,那就是求面积,三角形和正方形这些图形有面积公式,所以求解很简单,但问题在于,那些不规则图形的面积该怎么求?”

“例如我现在画的这条型曲线,这条曲线围成的面积需要求解,但没有公式,这个时候,如何求解一条曲线围成的面积,就成为了当时数学家们研究的问题。”

“阿基米德找到了办法,余华,你知道是什么办法吗?”

华罗庚目光看向余华。

“穷竭法,用熟悉的图形去无限逼近曲线围成图形的面积。”余华回答道。

“对,穷竭法,提出者安提芬,改进者欧多克斯,完善者阿基米德,穷竭法思想就是用无限个熟悉图形去求一条曲线围成图形的面积,在数学史上,穷竭法被视为微积分的前身,且严谨性无可挑剔。”

华罗庚右手握着粉笔,画出穷竭法的求解过程,用一个个三角形去填充型曲线所围成的面积,最终求出面积大小。

整个过程极为繁琐,但无比严谨。

华罗庚求解完成,随即用板刷擦去公式和图形,又重新写下一个新的概念,通过矩形求面积:

“穷竭法沿用到了十七世纪,这一千多年历史之中,有我国的割圆术求面积,但计算过于复杂,并不适用,穷竭法自身局限性也逐渐明显,对于不同曲线围成的面积需要使用不同的图形去逼近,而不同图形的证明技巧并不一样,极为繁琐,这个时期数学界出现‘用矩形来逼近原图形’,思想与穷竭法一致,且更加简单,但矩形求解存在一个问题,那就是失去了严谨性,这是一个非常严重的情况。”

严谨是数学的灵魂。

失去简单性,数学失去很多愚笨者。

失去严谨,数学将会失去一切。

如果一个定理,一个公式,一个数学常数失去了严谨性,那意味着整个数学大厦的崩塌。

本章未完,请翻下一页继续阅读......... 《我的科学时代》 最新章节第九十二章 微积分的故事!,网址:https://www.bqgbi.org/215_215683/105.html

上一章我的科学时代章节列表下一页